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Abstract
Invariant directions of the Riccati difference equation of Kalman
filtering are shqwﬁ to occur in a large class of prediction problems aﬁd
to be related to .a certain in?ariant'subspace of the transpose of the
feedback:matrix. ‘The discrete time stochastic realization problem is
studied in its deterministic as well as probabilistic aspects. In par-
ticular a new derivation of the classification of the minimal warkovian
representations~of the given process z is ?tesented which is based on
a certain backward filter of the iInnovations. For each markovian repre-
sentation which can be determined from 2z the space of invariant direc-
tions is decomposed into two subspacés, one on which it is possible to
predict the state process without error forward in time and onme on which

this can be done backward in time.
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Introduction

The aim of this paper is to extend the theory of invariant direc-
tions of the matrix Riccati equation to a large class of filtering prob-
lems, to present some new results on the deterministic and probabilistic
aspects of the discrete Eime stochastic realization problem and to
illustrate the particular features introduced in stochastic realization
by the presence of invariant directionms.

Part 1 of the paper is concerned with characterizing invariant vec-
tors for the usual linear least squares estimation problem in additive
white noise. We e#tend the previous results on the colored noise prob-
lem (8, 14, 29] to our more general setting and ﬁresent some new ones.
The main result of this part is Theorem 1.6 which provides different
ﬁecessary and sufficient conditions for invariance. These conditions are
phrased in terms of the convolution of two weighting patterns, of the
optimal control of the dual problem, of the best one step predictor and
of the feedback matrix I'(t) of the Kalman filter. The latter character-
ization appears here for the first time. Indeed, the space of all in-
variant directions is simply the invariant subspace related to the eigen-
value zero of the transpose of T[I'(t) for t larger than a certain value.
This interpretation turns out to be quite useful and enlightening, since
T(+) 4is the transition matrix of the estimation error and it is essen-
tial in classifying markovian représentati;ﬁgﬁgieihe stochastic realiza-
tion setting (see e.g., Theorem 2.8). Also the fact that invariant vec-
tors are generalized eigenvectors sheds new light on the proof techniques
employed in [8, 9, 29]. The paper [9] by Clements and B. D. 0. Andersonm,

which contains results closely related to conditions (ii) and (iii) of
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Theorem 1.6, became avanabl; to us right after the firist version of
this paper was submitted. The emphasis in [9], however, is somewhat
different from ours in that the authors seek to characterize invariance
for a very general form of the linear quadratic regulator problem,
whereas our main interest lies in the stochastic implications of this
pPhenomenon.

'The second part of the paper deals with discrete time stochastic
realization theory. Given a wide sense stationary vector process =z
with rational spectral density ¢, such that &(») is finite and
Q(em) is positive defin:l'.t:e for all w, and a Hilbert space H con-
taining the components of z(t) for all t, consider the problem of

determining all minimal markovian representations of z (stochastic

realizations) driven by a white noise with components in H. We solve

the problem in the following way. First the second order properties

of the stochastic realizations are described. Our results integrate
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those of B. D. O. Anderson [3-5], Faurre [11, 12] and Ruckebusch [33,

34]. In particular, we show that the correspondence in [33; p.70] be-

tween realizations with square transfer function and real symmetric so-

lutions of a certain algebraic matrix equation of the Riccati type holds

without any assumption on the feedback ina:rix. Our analysis on this

aspect of the stochastic realization problem parallels in some respects

" the continuous time work of Lindquist and Picci [19]. .
Then we turn to the probabilistic side of the problem which has

received considerable attention in recent years [1, 2, 18-23, 27, 32-36].

15
A tool for this study is provided to us by Theorem 2.5, which establishes b

K
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a correspondence between the deterministic as well as stochastic elements
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of realizations evolving forward and backward in time. The last two
sections of Part 2 are devoted to a new derivation of the classification
of the state processes of stochastic realizations due to Ruckebusch [33]
in discrete time and Lindquist and Picci in continuous time [19]. Our
approach makes essential use of markovian representations of the inno-
vation process with the estimation error as the state. Ruckebusch has
used the error process in finite and infinite dimensional stochastic
realization to derive a number of results [33-35], but our idea of asso-
ciating it with a stochastic realization of the innovatidhs appears to
be new. Tackling the problem in this way we not only derive the main
results in a rather simple manner, but we also gain insight into their
meaning. For instance, the important result that realizations which can
be constructed from only the process =z (intermal) are in ome to one
correspondence with the invariant subspaces of the feedback matrix T,
(Theorem 2.8) can be given a natural explanation in terms of the back-
ward filter of the innovations (see Remark 2.10). Last, but not least,
these stochastic realizations of the innovation process provide a key to
understanding the relationship between the invariant subspaces of [ ¥
and a certain class of inner functions in terms of which it is possible
to describe the realizations of z [21, 35, 36]. Our results on this
subject, however, will be presented elsewhere.~

Part 3 is the natural continuation of Parts 1 and 2 in that it
explores how invariant directions affect the family of stochastic reali-
zations. Indeed the space of invariant vectors I is the same for all
realizations and is nontrivial if and only if &(®) is singular. The

characterization of I as the invariant subspace of the transpose of
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I', relative to zero is important in establishing the two principal re-

*
sults of Part 3. The first is Theorem 3.8 which says, loosely speaking,
that in an invariant direction we can either predict or smooth the state
of an internal realization exactly (i.e., without error), showing that

I 1is closely related to the germ space of z [23]. The second is
Theorem 3.9 which embeds every internal realization in a chain of in-

ternal realizations (totally ordered with respect to state covariances)

whose minimum elemgnt-has a full set of predictable directions [14] and

whose maximum one has a full set of smoothable directions (Definition 3.7).
The last section of Part 3 is devoted to comparing two possible
approaches to discrete time stochastic realization based on different
factorizations of the covariance operator. We show that the factoriza-
tion leading to markovian representations without noise in the output
[1, 11] considerably narrows, compared with the other approach, the
solution class of the stochastic realization problem when ¢(w) is
singular. This deficiency of the first method makes it advisable to
seek markovian representations of the type considered in this paper un-
less nonsingularity of ¢(») 1is guaranteed.
It is worthwhile remarking that the assumptions made on the process
2 in Parts 2 and 3 are mostly for simplicity. Indeed many of the cemtral
results can be astablished, in a suitably modified form, in the nonsta-
tionary case under mild assumptions on 2z, albeit the derivation becomes
more involved. This explains why we refrain from introducing backward
realizations and related concepts, like that of smoothable direction, in
the setting of Part 1. Our results on this matter will be presented

somevhere else.
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The scalar case has some interesting features for which we

refer the reader to [23].
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Part 1

INVARIANT DIRECTIONS OF THE MATRIX RICCATI EQUATION

1.1 Basic notation and formulation of the problem.
We use standard vector-matrix nétation, with the following conven-

tions. The unit matrix is denoted by I, the transpose of a matrix by

prime. All vectors without prime are column vectors. N(R) indicates
b the null space of the matrix R. If R is symmetric, R >0 (R 20)

means R positive (nonnegative) definite. If R 2 0, R]'/z

is the
unique nonnegative square root of R. The Moore-Penrose pseudoinverse
[26] is denoted by #. The trace operator is indicated by tr. The

cone of symmetric, nonnegative definite n X n matrices is denoted by

Cn. Kronecker symbol is Gst. The superscript o identifies "optimal."

Consider the linear stochastic model

4 (1.1) x(t + 1) = Ax(t) + Bw(t)

(1.2) y(t) = Cx(t) + Dw(t)

4 with initial condition x(0) = X, where A, B. C and D are constant

matrices of dimensions n Xn, n Xp, mXn and m X p, X, is an

n-dimensional zero-mean random vector, the input w is a p-dimensional
zero-mean white noise sequence uncorrelated with X E{xox o’} = Po and

E{w(s)w(t) '} = 15

1
3
4l




As is well-known, the best linear least-squares esiimate ;(c) of
x(t), given the data {y(0), ..., y(t = 1)}, is generated recursively

by the Kalman filter
(1.3) x(t + 1) = AR(t) + K(t) [y(t) - Cx(t)] x(0) = 0
where K(t) is given by

(1.4) K(t) = (AZ(t)C; + BD') (CI(t)C’ + DD')'

and I(t) satisfies the Riccati difference equation

[Z(t + 1) = AZ(t)A’ .
— (AZ(£)€’ + BD') (CI(t)C’ + DD’ T (CI(t)A’ + DB

(1.5) 1
+ BB'

(Z(0) = Po

We shall indicate the solution of (1.5) at time s by ZI(s; Po) when

we intend to emphasize the dependence on the initial conditiou Po'

Definition 1.1 ([8]). The n-dimensional vector a is called an
s-itnvariant direction of equation (1.5) if a'I(t; Po) = a'Z(s; 0) for

all t2s and all P € C.
o n

We shall study the procblem of characterizing all invariant directioms

of equation (1.5).

1.2 Preliminaries.

| In this section we transcribe some well known results of duality

between estimation and control into a form best suited to our problem.
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We refer the reader to [24] for the variational principles underlying
this duvality. .

Since §(c + 1) 1is in the linear span of y(0), ..., y(t) there
exist matrices U(s, t)o for s =0, ..., t such that %(t + 1) =
-Z:-O (u(s, t)°)'y(s). Such sequence is optimal for the following dual

problem: find U(t) = (U(0, t), °*°* , U(t, t)) which minimizes

- t :
(1.6) er{J(u(e)]1} = er{a(-1, £) 'P Q(-1, t) + Y 2(s, t)'2(s, t)}
s=0
where

(1.7) Q(s -1, t) = A'Q(s, t) + C'U(s, t) Q(t, t) = I
(1.8) 2z(s, t) = B'Q(s, t) + D'u(s, t)

A standard argument yields the closed~loop form of the optimal con-

trol
(1.9) (s, t)° = -K(s) 'Q(s, ©)° s=0, ..., t

Consider the linear estimator of i(t + 1) given by y(t + 1) =
-2:_0 U(s, t)’'y(s). Then it is easily seen that
t

(1.10) =x(t+1) - Y(t +1) = Q(-1, £)'x_+ Y 2(s, t)'w(s)
: s=0

Introducing the quantities P(s, t) = E{x(s)[x(t + 1) - y(t + 1)]1'},
R(s, t) = E{y(s)[x(t +'1) - y(t + 1)]'} and applying the operator
E{s[x(t + 1) - y(t + 1)]'} to both sides of (1.1)-(1.2) we obtaim, in

view of (1.10), the following adjoint system

(1.11) P(s + 1, t) o AP(s, t) + BZ(s, t) P(0, t) = POQ(-l, t)

s el ki ko 34 sl st el




(1.12) R(s, t) = CP(s, t) + DZ(s, t)

The terminology is justified by the fact that, setting up the discrete
minimun principle for the dual problem (1.1l) are seen to be, with the

appropriate normalization, the adjoint equations. Let us note that
(1.13) R(s, t) =0 g magte e

is a necessary and sufficient condition for optimality of the U(t) se-

quence. Whenever A 1is nonsingular we can rewrite (1.7) in the form
(1.14) Q(s, t) = (A')-lQ(s -3 t) = (A')'lcu(s. t) (e, t) = I
Hence we have the following input-output relations:

s ~ -— e
(1.15) 2(s, ©) = } T(1) © (s - 1, t) + B'(A""5"2q(-1, ¢)
1=0

8
(1.16) R(s, t) = ] T()z(s - 1, t) + AP Q(-1, t)
1=0

where the weighting patterns f(-) and T(°¢) are defined by

= D’ - B'(AN ¢! 1=0
(1.17) T(1) = ey
-B'(AN) T C! 1>0
i {n 1=0
1.1 T(1) = v
cal™lp 1>0

Combining (1.14) and (1.15) leads us to the Hamiltonian system




T

a(s, ©) ] ™t dfaes - 1, ©
(1.19) - g
P(s + 1, t) BB’ (A") "~ AllR(s, )

—-(A I) -lc
+ -1 | U (s B);
BD’ - BB'(A")

Q(-1, t) 1) i
{ - Q('lo t)

P(0, t) 3

; s [Q(s -1, v
(1.20) R(s, t)=[DB'(A") -~ C]

] + [DD' - DB'(A')“lc']u(s, t)
P(s, t)

vhere QC-1, t) = (AN% + 15 (an'c’v (4, ©). It is clear that the
weighting patterm In(') of the Hamiltonian system is just the convolu-
tion of T(+) and T(+).
(1.21) Tg(d) = [T*TIA) = | T(L - H)TQ)
j=0
The matrices tH(O), T Tn(n - 1) will play a central role in

establishing necessary and sufficient conditions for invariance.

1.3 Characterization of invariant directions.

We study the case where A is nonsingular. This assumption enables
us to derive explicit expressions for the invariant vectors. (The case
where no restriction is placed on A and on the definitness of the cri-
terion matrices has been recently investigated in [9]). The three follow-

ing lemmas extend known results to our more general setting.

Lemma 1.2 The vector a is an s-invariant direction of (1.5) if

and only if
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(1.22) aeNQ(t-s, % forall t2s-1 andall B_ e e

Proof. Observe that4a control U(t) is optimal for the dual problem
1f and only if it minimizes a’J[U(t)]a for all a € R®. The result
now follows from a straightforward modification of the argument of

% Theorem 3 in [29]. /

Notice that optimal quantities in the dual problem depend on the
: terminal weight Po. To keep notations simple, we shall refrain from

explicitly exhibiting this dependence.

Remark 1.3 The proof of the sufficiency part in Lemma 1.2 relies on

the fact that, under condition (1.22), U(t - i, t)oa is invariant over
t2s for 1=0, ..., s - 1. Moreover, when (1.22) holds, it is easily
seen using (1.7)-(1.9) that a e N(U(i, £)%) n N(Z(L, £)°) for

i=0, ..., t - s. In particular it follows from (1.10) that a'x(t + 1)=

’ ~ 2
a’ z;.g_,+1 21, ©)% w(1), where X(t) = x(t) - (t) 1is the estimation
error.
The mathematical framework set up in the previous section will be

useful in proving the following result.

Lenma 1.4 The vector a satisfies (1.22) if and only if

g -1
(1.23) a==-] (AN7cy
i=1

where the m-dimensional vectors Al’ AZ’ g As are such that

s-3
(1.24) ] DA, =0 39 3 iy B
a0 B 3+

A ——




In this case the optimal control satisfies
©(1.25) 0% = (0, .uey 0, A eeey A) |

Proof. Assume that (1.22) holds. In view of the time invariance dis-

cussed in Remark 1.3, we can set Xi =0(t-1+1, t)oa for
i=1, ..., s. Expression (1.23) can now be derived using (1.7) recur-

sively. Let us consider the input-output relation of the Hamiltonian

system

S
R(s, t) = [DBYAY ™ cmﬁ[}]qc—l. ® + ) T -1, 0
o i=

where

wnt 0

*s B'(ant A |

As observed in Remark 1.3, a € N(Q(-1, £)°). Then (1.24) follows from the |
}_

|

optimality conditions (1.13). Conversely suppose a 1is as in (1.23)

with the Aj:s satisfying (1.24). Using (1.9) and, recursively, (1.7), ;

we obtain |

{

t=k !

| Uk, £)% = k(AN + T @ntleruk + 1, ©°a 3
i i=1 '
i vhich, together with (1.23) yields 4
' r
k| |
? S s=-t+k il ’
3| & = "o ’ ] i
: Uk, t)°a = -K(k) '{ 1_2.1 (AN TCA i
| J
i ,
‘ | tik o 3 X ) ‘
g + AN et Uk + 1, )%= 0] 1

j i=1 i
\

T S 3 DS ! 3 ] »
g~ o - ~ - p . - - - -
’ h i v ‘ " ; ' . " & = L . Senn ” o . - 4 X ‘. 5 N
" . 3 N _ ¥ - -l . - y i - i .




A calculation similar to that found in the proof of Theorem 8 in [29],
i.e., using (1.4), (1.5) repeatedly and condition (1.24), shows that
s-t+k

(1.26) kW' Y @n~ien
1=1

A

t-k+i  “e-k+l

wvhich, inserted into the previous expression for U(k, t)oa, enables us
to derive U(k, t)oa = lt:-k+1 for k=t-s+1, ..., t recursively.
This and (1.7) yield Q(t - s, t)%a = 0, i.e., condition (1.22). Also

3 : (1.25) now follows in view of Remark 1.3. This completes the proof. / |

A straightforward extension of the proof of Theorem 8 in [29] estab- :

! lishes the following lemma.

Lemma 1.5 A vector a i8 s-itnwariant for (1.5) if and only if a 1is

as in (1.23) and

S
(1.27) a'f(t+1) =~ ] My(t+1-1) forall t2s8-1
1=1

Let -I'(t) denote the feedback matrix A - K(t)C.

Theorem 1.6 The following statements are equivalent:

(Z) a <8 an s-itnvariant direction of (1.5).
(i1) a satisfies (1.22).
(i21) a 118 as in (1.23) and (1.24) holds.
i (iv) a is as in (1.23) and (1.27) holds.

| (v) a generates the same s-dimensional cyclic subspace of T(t)'

forall t2s -1 and all Po € ('n_,' this tmvariant subspace i

A of T(t)' 1is associated with the eigenvalue zero, i.e.,

| (T(t) N %a = 0. Moreover T(t -s + 1)' s+« I(t)'a =0 for

all t2s - 1.
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Proof. The equivalepce of (1), (i1), (iii) and (iv) follows directly
from Lemmas 1.2, 1.4 and 1.5. Suppose a satisfies (v) and

observe that relations (1.7) and (1.9) yield the expression Q(t-s, t)°-
F'(t -8+ 1)’ eee I'(t)’. By assumption I'(t - s + 1)’ «ee I'(t)'a =0
and (1.22) follows. Conversely, if we assume (iii), we derive from

(1.26) and the last part of the proof of Lemma 1.4 the relation

s-J "
Me)' J @an 1c'xi

s=-j-1
ok
- an~icn
1=1 +] %

1=1 i+j+1

forall t 28 -3 -1 and all P° € Cn, where j =1, ..., s -1 and,
for j = s - 1, the right hand side is defined to be zero. This estab-
lishes (v). /

Condition (v) of this theorem is new. Its importance will completely

surface in the s:ochastic'realization setting.

lemark 1.7 ([8]). The sets Is of s-invariant directions and I =
u:;l I. of invariant directions are vector spaces. It follows from the

n
previous theorem that I = Ugml Is.

Remark 1.8. The dimension of the invariant subspace I can be easily de-
termined in the single-output case y(t) = c’x(t) + d'w(t). It is equal
to the minimum between the rank of the observability matrix

[c Afc ev- (A')n-lc]' and the first index j such that TH(j -1) =

vee = TB(O) =0 and Tu(j) # 0. The general case is rather involved.

We shall not pursue here the extension of the results of [29] on this

matter.




10

Let
-] A -1

(1.28) W(z) = } T(L)z = = C(zI - A) "B + D
i=0

be the transfer function of (1.1)-(1.2) and

[ -i
(1.29) W_(z) = (1)z
(@ - 11,

the transfer function of the Hamiltonian system. The following charac-

terization of TH(') will be helpful in the third part of the paper.
Theorem 1.9  Assume A nonsingular. Then

(1.30) Vg(2) = W)W )’

If y in (1.2) is stationmary with spectral density &(z), we also have
(1.31) Wa(z) = ¢(2)

Proof. Consider W(z X)' = B'(z 11 - AN Y¢c' + D' =

) - 2ty Ler + pr. Expand the last term in a neighborhood

of infinity as follows:

(1.32) -B'ANH "1 - 27 tanH e + p

1 2

=D’ -B'(AN Tc’ - 3'an 3¢zt - Bran e 2 ...

= 7 Tt
1=0

Take the Cauchy product of the two series in (1.28) and (1.32) to get

(1.30). In the case of a stationary y the well-known spectral factori-

zation formula




(1.33) 8(z) = W(z)W(z Ly’
yields (1.31). /i

E Notice that the calculations in the previous theorem make sense be-
cause the series in (1.28) and (1.29) converge re;pectively to W(z)

anQ to Wh(z) in an appropriate neighborhood of infinity.

t . Let A(t, s) = E{y(t)y(s)’} be the covariance operator of the ob-

: servations. It is a simple matter, using the expression y(s) =

cA ™ x (s +n) + Z::é E(i)'w(s + 1) which can be derived from (1.1)- ﬂ

(1.2), to see that the parameters TH(O), oo Tu(n - 1) determine the

degree of "smoothness" of A(*,*), i.e., the number of differencing opera-

tions on A(°*,°*) necessary in each direction to produce a Kronecker del-.

ta. This number has‘been named in the scalar case relative order of the

covariance, see [14] for example. This fact has its counterpart in the

spectral domain in Theorem 1.9.

R Y £ R IR T

1.4 Predictable directions.

The invariance properties of invariant directions have been pointed

out by several authors [8, 14]. Indeed, as it is apparent from Theorem
1.6, the space I is invariant over models (1.1)-(1.2) having the same
covariance of the output and the same (up to a change of basis in the state
ﬁ space) pair (A, C). However, if a 4is an s-invariant vector for (1.5)

| the value a’ I(s; Po) does depend on the model. A special case of par-

! ticular interest is when a ¢ N(Z(s; Po)).




Definition 1.10 ([14]). The n-dimensional vector a 1is called an
s-predictable direction of equation (1.5) if a'I(t; Po) = a'I(s; Po) =0

for all t 2 s. The two following theorems extend some results of Gevers

[14].

Theorem 1.11 The vector a 18 an s-predictable direction of (1.5) if
and only if a 1is as in (1.23) with the A, satisfying

s=1
(1.34) 1_20 r(i)xj+1 =0 =1, eu.y 8

Proof. If a is s-predictable a'X(t +1) =0 for all t2s - 1.

Using (1.10) with optimal quantities we see that & € N(Q(-1, t)°) and

|
é
Ei

S €N g ...t N(Z(1, t)°) for all t 2s - 1. Again time invariance of
the optimal control can be shown to hold and, identifying quantities as
in (1.25), we get (1.23) from Q(-1, s - l)oa = 0. Also (1.34) follows
from (1.15). To prove the converse first observe that (1.34) implies
(1.24). By Lemma 1.4 a € N(Q(-1, t)°) and (1.25) holds. From (1.15)
and (1.10) we conclude that a'X(t + 1) =0 forall t2s -1, {i.e.,

a 1s s-predictable. //

Theorem 1.12 Let ZI(s; Po) > 0. Theg I(t; Po) >0 forall t2s

if and only if T(0) has rank m.

Proof. Let A be such that T(O)A = 0. Them (A") 1C'A € N(Z(t; P))
‘ for all t 2 1. To prove the other half we use induction. Suppose

[2 I(t - 1; Po) >0 and a e N(Z(t; Po))' It follows from the principle
4

of optimality that I3
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(1.35) 0 = a'" I(t; Po)a = min {(a’A + A'C)I(t - 1; Po)(A'a + C'))

AeR™

+ (a'B+ A'D)(B’'a + D’'))
Let A% be the optimal value in (1.35). Since I(t - 1; Po) >0 we get

a=-A""1c° B'a+DM° =0 and finally (D' - B'(A")"1c")2° = 0.

If T(0) has rank m this implies that a = 0. Vi

Remark 1.13. Theorem 1.12 agrees with the results obtained by Silverman
et al. [25, 30, 38]. In fact, the presence of nontrivial predictable di-
rections of (1.5) implies that the system (1.1)-(1.2) is not strongly ob-
gervable ([38]. However, it can well happen that it is completely observ-
able (agd controllable). In the third part of the.paper we shall study a
set of minimal realizations with a nontrivial invariant and, for some of

them, predictable subspace.

1.5 Discussion.
Our study has.shown that invariant directions can occur in a more
general situation than just the noise~free measurements case treated in

[8, 14, 29]. Conditions (iv) and (vj of Theorem 1.6 provide us with a

probabilistic interpretation of this phenomenon. In an invariant direc-
tion the optimal filter depends only on some of the last observation in-
stead of the whole information available.A This fact is strictly related

to the invariant subspace of T'(t)’ corresponding to zero. Moreover, in

the case when y is stationary with rational spectral demsity, condition
(1i1) of Theorem 1.6 with Theorem 1.9 shows a precise connection between
invariant vectors and the spectrum of y. All of this motivates the sto-

chastic realization approach to the problem taken in Part 3.
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Finally we remark that this theory can be extended in a straightfor-
ward manner to the case when the system matrices are time-varying replacing
the concept of invariant direction by that of degenmerate dicection [14].

A reduction of the order of the Riccati equation which has to be solved
can be achieved along the lines of [8] whenever invariant (or degenerate)
directions exist.
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Part 2

DISCRETE TIME STOCHASTIC REALIZATION:
GENERAL THEORY

2.1 Notation and problem formulation.

Almost sure equality between random vectors is simply indicated as
equality. If {E(t); t € Z} s a second order vector process defined on
the probability space (R, F, P) and S a subset of the integers 1,
we denote by HS(E) the closed linear hull in Lz(ﬂ, F, P) of the compo-
ments of E(t), t € S. We shall write H(E), E_(E), HL(E) and H(E(t))
instead of BZ(E), n{zeleSt}(E)’ H{zeZIzZt}(E) and H{&(E) respective~
ly. Let E{°|Hs(€)} denote the orthogonal projection operator omto
B (). We abbreviate E{°|H(£(t))} as §{°|E(t)}. The process & is

called a wide sense vector Markov process if
ElE(e) [H (D)) = ElEGs)|E()}  for s 2t
or equivalently
E(E(s) B, ()} = E(E(s) |E(D)) for s <t

For the sake of brevity we shall use the word 'Markov'" instead of the

expression "wide sense vector Markov."

15




ot i i

16

We shall be concerned with a wide sense stationary, purely nondeter-
ministic, m-dimensional stochastic process {z(t:)-; t € Z}. The process z, .
defined on the probability space (R, F, P), is assumed to be centered and
to have a rational spectral density ¢ such that &(®) < ®, The finite-
ness of ¢(») 1is essential only in Part 3 and is assumed here for simpli-
city. The matrix function ¢(°*) enjoys the following properties: each
element of ¢ 1is analytic on the unit circle, ¢ is discrete paraheruitian,
ie., ¥(2z)' = Q(z-l) and ¢(eim) 2 0 hermitian for all real w. In

addition we suppose that 2z 1is a minimal process [31] which, in view of

the rationality of its spectral density, is equivalent to Q(ew) >0 for
all w. This assumption too is made for convenience and can be removed
without impairing the main results of Parts 2 and 3. .
In many problems of estimation and optimal control, when given a non
Markov process 2z which models the information flow, it is necessary
z(t - 1)
a Markov process. More precisely we are interested in the following two

problems.

I. Wide sense stochastic realization problem: Determine, from the know-
ledge of ¢, all quadruplets [A, B, C, D], with dimension of A minimal,
such that the process y, generated by the dymamical system (1.1) - (1.2)
driven by an arbitrary normalized white noise w, has the same specfral

i
to resort to an auiiliary Markov process x which makes E£(t) = [ i ) :‘
density ¢ as z.

1I. Proper stochastic realization problem: Let H be a Hilbert space
such that H(z) ¢ H = LZ(Q, F, P). Given H and the process 2z find all
quintuplets [A, B, C, D; w], with dimension of A minimal and w a nor-

malized white noise satisfying H(w) < H, such that y(t), generated by
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(1.1) - (1.2) and z(t) are equivalent random vectors for all t.

We shall call a solution to Problem I a wide sense minimal stochas-
tic realization and a solution to Problem II a proper minimall stochas-
tic realization. It is immediate that to each proper stochastic realiza-
tion there corresponds a (unique) wide sense realization. The converse
is false. To attack Problem II we shall choose a route passing through
the solution of Problem I, with the intent of deriving some new results
along the way. It is good to bear in mind, however, that a direct proba-
bilistic approach to proper stochastic realization is possible aﬁd in a

sense more natural [18, 20-22, 27, 35, 36].

2.2 Wide sense stochastic realizations.

Our preliminaries on Problem I are based on the important work of
B. D. 0. Anderson [3-5] and Faurre (11, 12]. Proble; I is equivalent to
the classical spectral factorization problem. Find all minimal stable
spectral factors of ¥, i.e., all matrices W of real rational functioms
of minimal McMillan degree [6] and with all their poles inside the unit
circle which satisfy (1.33). Indeed, if [A, B, C, D] solves Problem I,
then W(z) = C(zI - A)‘IB + D 1is a stable minimal spectral factor of ¢.
Con;erse;y, any such W yields a whole class of wide sense stochastic
realizations. In fact, using one of the algorithms [16, 39, 41] available
in the literature we can compute a minimal (6] realization (A, B, C, D]

of W. Then all minimal realizations of W given by

=1 -
(2.1) (r-tar, 18, c1, D) TeGL, (R

1 From now on we shall leave the word minimal out. All realizatiqms

are to be intended to be minimal unless the opposite is explicitly stated.

e
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solve Problem I. 1In view of this equivalence Problem I can be solved as

follows. Express ¢, by means of partial fractions, as
(2.2) 8(z) = S(z) + Sz D)’

where S 1is a positive realz and rational function. Let [F, G, H, J]
be a minimal realization of' S. As observed before, several procedures
are knowm to detemiﬁe (F, G, H, J] which is unique up to an equivalence
such as in (2.1). The following simple lemma allows us to eliminate J

in the sequel.

Lemma 2.1 Let s be the positive real function satisfying (2.2) and
[F, G, H, J] a minimal realization of S. If dimF=n 21, then F 1ig
nomsingular and J + J' = G'(F") Lg’ + ®(x).

Progf. Taking limits in (2.2) we see that &(®) = J + J' +

lin ¢'(z7l1 - #)"lm’, since S(z) = H(zI - F)™YG + J. The conclusion now

follows from the finiteness of &(«) and the minimality of [F, G, H, J]./

To avoid trivialities, we shall assume from now on that 2z is not a
white noise, i.e., dim F=n 2 1. It follows from Lemma 2.1 and the cele-
brated Positive Real Lemma (see e.g., [28]) that the set of all wide sense

stochastic realizations is nonempty and given by
(2.3) [4, B, C, D] = [T 'FT, T7X(3,, B,)V, BT, (R(®)MZ, 0)v]

where T ¢ GLn(R), V 1is any p X p constant orthogonal matrix, Bl is

n Xm, Bz is nx (p -m) (here p2m is arbitrary), P is n X n,

A real rational function with no pole on the unit circle is said
to be (discrete) positive real if it has no poles outside the unit circle
and S(el¥) + s(e=#) > 0 hermitian for all real w.
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symmetric and positive definite, R(P) is the nonnegative definite quan-

tity G'(F')-lﬂ' + ®(») - HPH'’ and (P, B,, B,) solve the system

= ' ’ ’
(2.4) P = FPF' + BB + BB/
(2.5) G = FPE' + nlx(p)l/2

'I: is no restriction tochoose T =1 and V=1I in (2.3). In fact all

other realizations can be obtained from realizations of the form

(2.6) x(t + 1) = Fx(t) + Blu(t) + Bzv(t) W= [:}

/

(2.7) 2(t) = Bx(t) + R(P)Y 2u(t)

by means of a change of basis and an orthogonal transformation of w. Hence,
whenever convenient, we shall narrow our attention to realizations of the
type (2.6) - (2.7). We shall write P for the set of all symmetric, posi-
tive definite P which solve (2.4) - (2.5) and Q for the subset of P
consisting of those P such that R(P) is singular. Notice that the
realizations corresponding to elements of @ are precisely those which
have singular intensity of the noise in the output equation. It can be
shown [12] thac P 1is compact, convex and forms a complete lattice when
endowed with the natural partial order Pl 2 P2 if and omnly if Pl - Pz 2 0.
There exist a maximal and a minimal element P* and P, so that P, <

P < P* for all P ¢ P. Moreover the minimality of the process 2z implies
(13] that P* - P, and R(P,) are positive definite. Hence P\Q is

nonempty. The following result provides us with some information about

the set Q.
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Proﬁosition 2.2 The set P\Q tis comvex. Forall Pe P\Q, Qe Q
and X € (0, 1] we have that [AP + (1 - A)Q] € P\Q. The set Q <is
contained in the relative boundary of P.

Proof. The first two results follow at once from the fact that for Pl’
P2 e P, A€ [0, 1] we have R(APl + (1 - X)Pz)'- lR(Pl) + (1 - A)E(Pz).
They in turn imply that, if P ¢ P\Q and Q ¢ Q, the segment [P, Q]
cannot be extended beyond Q without leaQing P. We conclude that Q

belongs to the relative boundary of P. //

axn
R

Let us introduce the mapping A: R-EEE? defined by
(2.8) A(P) = =P + FPF' + (G - FPH")R(P) 1(G’ - HPF')

The set P\Q 1is contained in the domain of A(e). It is possible to
extend A(*) to all of P since the points in @ constitute removable
discontinuities. We can now derive an important alternative characteriza-

tion of the set P.

Theorem 2.3 Let A(+) be given by (2.8). Then P = {P|P = P’, A(P) s O}.

Proof. Let (P, B,» Bz) solve (2.5)-(2.6) with P = P’ and P > 0. Then
if P ¢ P\Q, we get immediately A(P) = -ané. If Pe Q, let {Pi}:;l

be a sequence in P\Q converging to P. Then A(Pi) < 0 and it follows

that A(P) = lim A(P,) < 0. This shows that P c {P|P = P', A(P) = O}.
i
The other inclusion can be proven by an argument akin to that used by

B. D. O. Anderson [4; p.140]. // |

This result provides a bridge between the theory of positive real ,'
functions and the study of quadratic matrix inequalities and algebraic !

Riccati equatioms.




21

Let us introduce the set Po = {P ¢ PIA(P) = 0}. Clearly Po con-

sists of all P ¢ P for which B, = 0.

2

Remark 2.4 Since the eigenvalues of F 1lie in the open unit disc, ele-~
mentary Liapunov theory ensures that to each (Bl, Bz) there corresponds
a unique P. The converse does not hold in gemeral. However, for reali-
zations of the form (2.6)-(2.7), to each P there corresponds a unique
31. This is immediate from (2.5) for P ¢ P\Q and holds for all P e P
since points in Q appear as removable discontinuities of the map

P+ (G- m’)R(P).'I/z. Hence there is a unique wide sense realization

of the type (2.6)-(2.7) corresponding to each P in Po.

Both Problem I and IT seek to find dynamical systems evolving forward
in time like (1.1)-(1.2) which is natural to call forward representations
of the process z. Yet, there are other representations of interest.
There exist situatioms, for example, in which it is more useful to con-

sider a backward representation of the form
(2.9) x(t - 1) = EX(t) + Bw(t)
(2.10) y(t) = Cx(t) + Dw(t)

where w is a normalized white noise such that ;(t) is orthogonal to
B:(;) for all t. This leads us to formulate the backward counterpart

of Problems I and II.

I. Wide sense backward stochastic realization problem: Determine, from
the knowledge of ¢, all quadruplets [A, B, C, D], with dimension of A

minimal, such that the process y, gemerated by the dynamical system
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(2.9)-(2.10) driven by an arbitrary normalized white noise ;, has the

same spectral demsity ¢ as z.

II. Proper backward stochastic realization problem: Given B and z

find all quintuplets [A, B, C, D; w], with dimension of A minimal and |
¥ a normalized white noise satisfying H(w) < H, such that y(t) given

by (2.9)-(2.10) and z(t) are equivalent random vectors for all t.

Solutions to Problems I and II are called wide sense and proper back-
ward - stochastic realizations respectively. We shall now briefly discuss
Problem I, while Problem II will be implicitly solved in the next three
sections in view of Theorem 2.5 below.

Problem I is equivalent to the dual spectral factorization problem
considered by Anderson [3] and Faurre [12] which consists in finding all
minimal unstable (i.e., with all the poles outside the unit circ'le) spec-
tral factors W(z) of ®(z). It follows from the parahermitian property
of ¢ that this problem is equivalent to the spectral factorizationm prob-
lem for 9(°)’. Hence all the results on Problem I have a natural coun-
terpart in the backward setting via the duality relation (F, G, H, 0(05) -+
(F', ', G', ®(=)'). 1In particular all solutions to Problem I are charac-

terized by
(2.11) (X, B, C, D] = [T r'T, r'l(il, B,)V, ¢'T, ®®2, oy

where T and V are as in (2.3), El is 0 X m, fz

P is n X n, symetric and positive definite, E(-P') = HF

is nx (p -m),

16 + o(=) ' - ¢'F6

and (P, il’ ,) solve the system

e ————— —— v ol e — ..
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; P = F P Y R R!

(2.12) T = PR + B8] + 5,8

(2.13) H' = F'PG + ili(F)”z

Whenever it is appropriate, we shall restrict ourselves to realiza-

ke Wi

tions of the type

L u
(2.14) x(t - 1) = F'x(t) + B u(t) + B,(¢) v |_
v
:
5 (2.15) 2(t) = Gx(e) + R@® /%5t

where P 1is the state covariance. The set P of all symmetric, positive

definite solutions to (2.12)-(2.13) and § of all P ¢ P such that R(P)
is singular enjoy the same kind of properties as P and Q respectively.

In particular there exist -f* and P* such that F* <P < P* for all

P e?P. It is well known [12, 37] that P = {P"1|P ¢ P}, so that B, =

(@) and P* = (2,)"l. Indeed, the following result holds.

Proposition 2.5 The quadruplet [F, B, H, D] with B = (Bys By) and
D= (R(P)]'/z, 0) solves Problem I if and omly if [F', B, G', D] solves
Problem I where ;

(2.16) B= (3, 3, = 2y lgr - a7 lpyl/2
(2.17) B = (D - Hr-ls) (I - B'P-LB)IIZ -

- =1..1/2
o= BF 5,)(1 - 3271B)

ok (lelz - gl

{ Proof. The result follows from long but simple calculations using (2.4)-

1 (2.5) and (2.12)=(2.13). /I i
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This proposition exhibits a correspondence between forwamd and back-
ward wide sense realizations and raises the question whether a result of
the same type can be established for proper realizations. We turn to this

problem in the beginning of the next sectiom.

2.3 Proper stochastic realizations.
Let us coﬁsider a proper stochastic realization of z ([F, B, H, D; w],

with state process x and state covariance P. As is well knqwn, the or-

thogonal decomposition
x(t + 1) = E(x(c + D[E(x)} + [x(t + 1) - Blx(c + 1) H (x)}]

yields (2.6). Similarly the expression

+

(2.18) x(t) = E{:(:)ln:_,_l(x)} + [x(t) - E{x(e) |8, )}

leads to a backward model. In fact, the process x is Markov in both

directions and

E{x(t) [x(t + 1)} = E{x(t)x(t) 'F'}E{x(t + 1)x(t + 1) '}-lx(t +1)

= PF'P Ix(t + 1)
which gives

P lx(t) = F/P Yx(t + 1) - F/P 1B[w(t) - B'(F") 12 Ix(t)]
= F'P ix(t + 1) - P Y IB(I - B'P 1B [w(t) -
- B'EN ey

Defining

(2.19) X(t) = P ix(t + 1)




25

and
(2.20) w(e) = (1 - 32y 2 (ue) - 8'®) e Ix(ey)
We finally obtain

(2.21) X(t - 1) = Fx(e) - P F LB - 32 By %(e)

It is not difficult to check that w 1is a normalized white noise such
that w(t) 1is orthogonal to H:(;) for all t. The forward and back-

ward noises are related as follows
(2.22) @ - 371325 = w(r) - Elw(o) |E], ()}
We also have

2(t) = Hx(t) + Dw(t) = [6' N 1L - pB ()" Lix(e) + Dw(t)
- c'p'l;(: +1) + [D - c'p']'s] [w(t) - B'(F ')'1P'1x(t)]

1/2—-

= G'x(t) + [D - nr'ln][I - B'P'ln] w(t)

Summing up we obtain a strict sense version of Proposition 2.5, analogous

to the continuous time result of Lindquist and Piceci [19].

Theorem 2.5 The quintuplet (F, B, H, D; w] <8 a proper (forward) sto-
chastic realization of z with state process x and state covariance P
if and only if the quintuplet [F', B, G', D; w] 1i& a proper backward
stochastic realization of z with state process x givem by (2.19) and
state covariance P L, where W is as in (2.20) and B, D are given by

(2.16)-(2.17).
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Results closely related to this theorem have been presented by
Akaike [1; p.168] and Ruckebusch [33; p.32]. However, the first deals
with realizations without noise in the observations, the second does not
derive expre;sim for w, B and D such as (2.20), (2.16) and (2.17).

So far we have said nothing about existence of proper stochastic
realizations. It is well knoqn that a necessary and sufficient condition
for a purely nondeterministic wide sense stationary process z to admit
finite dimensional stochastic realizations is that its spectral demsity
is rational and that in such a case there exists a unique realization of
the type (2.6)-(2.7) corresponding to P, (cf. [33] for example). The
minimum variance realization

(2.23) x,(t + 1) = Fx,(t) + Bu,(t)

/2

(2.26) 2(t) = Bx,(t) + R(2,) 2, (t)

~ 1s the steady-state Kalman filter, with the steady-state Kalman gain B,

given by
(2.25) B, = (FIH' + BD') (HIH' + 2. - 1-'1’,,11')11(?,\?)'1/2

where [F, B, H, D] 1is any wide sense realization and I is the unique

nonnegative definite solution to the 4lgebraic Riccati Equation
(2.26) L = FIF' - (FZH' + BD)(HZH' + DD') L(HIF’ + DB') + BB’

The noise u, is called the innovation process and is characterized by
the fact that E;(z) = B;(u*) for all t e Z. Finally, if x 1is the

state process of any proper realization (2.6)-(2.7), we have
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(2.27) x,(t) = E{x(t) |E]_, (2)}

By duality there exists a proper backward stochastic realization corres-
ponding to ?* » namely the backward steady-state Kalman filter

(2.28) x,(t = 1) = Fix, (t) + B,u,(t)
(2.29)  z(t) = Gz, (v) + REY2, (1)

Here the backward steady-state Kalman gain B, is given by

-1/2 -1/2

(2.30) B, = (F'Ic +BD")(G'TG + DD ") = (8’ - F'P,G)R(P,)

where [F’, B, G’, D] is any backward wide sense realization and ¥ is

the unique nonnegative definite solution to the Dual Algebraic Riccati
Equation
(2.31) T = F'TF - (F'TC + BD')(G'ZC + DB’) L(G'EF + DB’) + B3

The equality H:(z) = H:(E*) for all t ¢ Z characterizes the backward

imovation process u,. The backward filter satisfies
oo A +
(2.32) x,(t) = E(x(t)[E_,, @)}

where x is the state of any proper backward realization (2.14)-(2.15).
By Theorem 2.5 there exists a proper stochastic realization corresponding
to (2.28)-(2.29) (which, as it will be apparent in the next section, is

unique)
(2.33) x*(t + 1) = Fx*(t) + B*u¥*(t)

(2.36) ° z(t) = Bx*(t) + R(E*) T 2ux(e)

B T
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with state covariance P*., Then, if x 1s the state process of any real-

izatiom,

(2.35) ;*(c) = (%) Lex(e + 1) = P lE(x(e + 1)|H:+1(z)}
and

2.3  E{x(®) B )} = pem) Lxnce)

This justifies our choice of working with P-lx rather than x in the

backward setting. In fact (2.36) is not invariant over P.

Definition 2.6 ([19, 33]). A proper stochastic realization of z with
state process x 1is said to be internal if H(x) < H(z), extermal other-
wise.

Internal realizations are of particular interest since thex are the
only one we can construct from the process z. For example, the minimum
and maximum variance realizations introduced in this section are internal. §

It should be noted that the existence of external realizations depends on

H. If H = H(z), for instance, all realizations would be intermal.

2.4 Characterization:of internal realizations.

Let us consider the spectral representation of 2z (see e.g. [31])

given by

™
z(t) = et 33w

-
where dZ 1is an orthogonal stochastic measure such that

E(d2 () d2w)*} = 0(e!®) @

e e T i o e

e i kb i s f i
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(Here + denotes complex conjugation and transposition.) Let W(z) =
H(zI - F)-]'B1 + R(P)ll2 be a square (m X m) spectral factor of &(z).

Then the process u defined by
T

(2.37) () = J % ey 17! a2 (w)
-1

is a normalized white noise such that u(t) € H(z) for all ¢t [31; p.4l1]

and consequently ([F, Bl’ H, R(P)llz; u] 1is an internal realization of
z. The following result shows that W(°) being a square matrix function

is also necessary for a realization to be internal.

Theorem 2.7 ([19, .331) 4 proper stochastic realization is internal
if and only if its transfer function is square.

It follows from this theorem and Remark 2.4 that internal realizatiomns
of the form (2.6)-(2.7) are in one to one correspondence with the real
symmetric solutions of the matrix equation A(P) = 0. Hence, to charac-
terize further internal realizations, one could derive the discrete time
counterpart of the fundamental results of J. C. Willems [40] on the alge-
braic Riccati equation. However, a result akin to the classification of
the solutions fo the algebraic Riccati equation can be obtained directly
for the state processes of internal realizations. Notice that once the
state x(t) of an intermal realization has been determined the input

u(t) can be obtained inverting (2.9) as follows
u(e) = R(®) M 2ax(e) + rE) " 22(e)

(In the case when R(P) 1is singular we need to perform an appropriate
number of differencing operations on the output in various directions

(cf. (7] for example) before we can express u in terms.of x and z.)

-~ EPN— e e N —

vy
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Therefore we turn to the problem of characterizing the state pro-
cess of internal realizatioms.

Let us introduce the feedback matrix

T, = F - BR(2,) /8

The matrix I'*. is asymptotically stable due to the minimality of 2z [13].
It plays a central role in stochastic realization theory, as it is clear
from what follows. In particular we have the following important result,

whose continuous time counterpart can be found in [19].

‘Theorem 2.8 ([33]) The process x ti8 the state of an internal

realization if and only if
(2.38) x(t) = [I - Tr’]x*(t) + wsx*(t)

where L i8 the projection onto an invariant subspace S of T, along
(P*-P*)sj'. The covariance P of x and T, are related as follows

-1
(2.39) T, = T(P) = (P - P)(P* - P)

We shall give a new proof of this theorem, by means of an approach
which allows us to characterize also the external realizations in the
same framework. Our derivation hinges on the following simple observa-
tion. Let [F, (Bl, Bz), H, R(P)Uz; w] be a proper stochastic realiza-
tion of z with state process x and state covariance P. Then
[T4s (B, = B,R(P,) 1/2g (py1/ 2,32) ,R(P*)-]'/ ZH,R(P*) L2y l/2,4) 1aa proper
(nonminimal) stochastic realization of the innovation process u, with

state process x - X, and state covariance ; = P - P*. This can be seen

™

SE— ——
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by inverting the filter (2.23)-(2.24) to get

-1/2

(2.40) x,(t +1) = I x, (t) + BR(P,) z(t)

=-1/2

(2.41) u, (€)= R M 2ax (r) + RO 22(r)

and using (2.6)-(2.7). If we set ;(g) = x(t) - x,(t), we obtain the

model
(2.42) 2 + 1 = TEE + @) - BrREY Y REY Huw) + 30
v- ()
v
2.43)  u,(®) = REY V2B (e) + @) R(®) Y 2u(r

which is a forward stochastic realization of u, since w(t) 1 é:(;)
for all t. The representation (2.42)-(2.43) is not minimal since u,
is a white noise and its minimal realizations have dimension zero. Con-

versely consider a forward stochastic realization of u, of the form
(2.44) E(t + 1) = T,E(E) + Byu(t) + B,v() we [“]

-1/2 /

(2.45) u (®) = R V() + R®)Y Zu(o)]

where w 1is a normalized white noise and El is n X m. Observe that
w(t) 1is orthogonal to H:(x), where x = £ + x,, since x,(t) ¢ H;_l
- ~ ~1/2 ~

Bt-l(“*)' We conclude from this that [F, (Bl + B, R(P) 3 Bz), H,
R(P*)llzk(f)]'/z; w] is a minimal stochastic realization of 2. We col-

lect these observations in the following

(z) =
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Lemma 2.9 The map which sends the realization [F, (Bl, Bz). H,

R®)M2; w1 to the realization [T,, (3, - BR() /2

ney/2, 1y,
R(P*)-llzﬂ, R(P*)-ll ®)Y/2; u] is a one to one correspondence betuween
reglizations of z of the form (2.6)-(2.7) and realizations of u,

| of the form (2.44)=(2.45).

The map in Lemma 2.9 also induces a correspondence between state covari-
i : ances whichmaps P ¢ P to P - P,, translating the set P of the
{

amount -P,. The set P=P- P, has the zero element as its minimum

and the positive definite quantity P* - P, as its maximum. Notice that

the correspondence established in Lemma 2.9 is simply the correspondence

between the two input-output relations

T
z(t) = J el dow)

-

Sl

- |w
u,(t) = j emw;l(em)W(em) do(w)
-“

where W(z) = H(zI - F)-l(Bl, Bz) + R(P)]’/z, d€¢ is an orthogonal stochas- '

tic measure such that w(t) = /T ™% d0(w) md W,(z) = B(zI - ) 1, +
ree,) /2, ‘

From (2.23)-(2.24) and (2.40)-(2.41) we know that E _(z) = H_(u,)
for all t and H(z) = H(u,). Since u, 1is a white noise we have the

following orthogonal decomposition for the space H(z)

(2.46) H(z) = E_)(2) © H(u,)

Then, if x 1s the state process of an internal realization, we have




x(t) = E(x(c)ln(z)} = E{x(c)lu:_l(z)) + E{x(t)lﬂz(u*)}
which implies
(2.47) x(t) = x,(t) + Elx(e) - x*(t)lnt(u*)}

in view of (2.27) and the orthogonality between x,(t) and H:(u*). To
compute i{x(t) - x*(é)lnz(u*)} observe fifst that ;(c) = x(t) - x_(r)
is the state process of a realization of u, of the form (2.41)-(2.42).
Secondly, notice that u, 1s a stochastic process enjoying all the pro-
perties of i. Therefore we simply derive relation (2.36) with x and
u, 1n place of 'x and z respectively. - This idea of replacing a sto-
chastic process by its innovations is of course very common in filtering
theory and it turns out to be helpful also in our context.

We shall now derive the backward counterpart of a realization of the
type (2.42)-(2.43) corresponding to an internal realization. We set Bz =
0 din (2.42)-(2.43) and define P = P - P,. An orthogonal decomposition

for x(t) as in (2.18) yields the identity
(2.48)  x(e) = iR + 1) + [R(o) - BrPRCe + 1))

Observe that ;(t) - 5?;5’:(: + 1) 1is orthogonmal to B;_l(z). Also,
using (2.42)-(2.43), we see that E(x(t) - F/PPx(e + |E, ()} = 0.

Hence, using (2.46),

Tty - TR + 1) = BRe) - BriEfRce + 1) |u,(0))

2

= E(Z(t) |u (0} = FAREe,) M 20 (0)

and (2.48) becomes

i
i
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(2.49) x(e) = Frifface + 1) + Fumee,) 2 (o)
or
2.50 P = et + ) + PRre,) V2, 0

The output simply reads

(2.51) u,(c) = OF';(t + 1) +u,(t)

where O 1is the m X n 2zero matrix. The model (2.50)-(2.51) is the
backward counterpart of (2.42)-(2.43). We stress the fact that all
backward realizations of the innovations which we obtain in this fashion
from realizations (2.42)-(2.43) with Bz = 0 have the same input noise

u,. For ; = x* - x, Wwe obtain the backward filter

(2.52) (®* - B) " Tx*(t) - x,(r) =

= TJe* - P Tt + 1) - x,(t + 1))

-1/2

+ B'R(R,) " %u, (t)

Using altermatively (2.42) and (2.49) to compute E{;(t + 15§(t)0 ;

~

we establish the identity T*f = PP'T,P which gives

~f

(2.53) Bry = Brp'e

Then, using (2.49) and (2.53) we obtain

x(t) =P § (r,;)*a'n(p*)‘l/ Zu,(t + 1) ‘

i=0

which, together with (2.52), yields the desired expression

T ——

(2.54) x(t) = x,(£) + (P = P,)(P* - P,) L(x*(t) - x,(t))
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Hence x(t) e H(x*(t) - x,(t)) and (2.54) can be written

(2.55) T(t) = E{R(e)[x*(t) - x,(t)}

= (P - B)(P* - B,) F(x*(t) - x,(t))

from which it is seen that ®(P) = (P - 2P - P,‘,).l is a projection.

Rewriting (2.53) in the form
~i}
I.x(P) = w(P)(P* - P.)P r,m(P)

we see that w(P) pr;jects onto an invariant subspace of T,. Since
T(P)(P* - P,) = (P* - P.)W(P)’ and w(P)’ projects along st [15; p.61],
we conclude that w(P) projects parallel to (P* - P*)SL. Conversely

if w projects onto an invariant subspace of [, and w(P* - 2] -

(P* - P )7w', i.e., w 1is an admissable projection in Ruckebush's language,
it is easy :A construct first a realization of the innovations and then
one (internal) of z along the same lines as in [33]. This completes the

proof of Theorem 2.8. /f

Remark 2.10. Notice that, given the special form of the realization
(2.50)-(2.51), we did not need to invoke any invariance property such as
(2.32) of the filter (2.52) to compute Ef;(t)lﬂz(u*)}. The following
interpretation for Theorem 2.8 emerged in the proof. The state process

of an in:erﬁal realization of 2z is given by the forward filter of z
plus a "piece" of the maximum variance error  x*(t) - x,(t).

This piece must be such as to conform with the dynamics of x*(t) - x,(t)
which is determined by the transition matrix P*, i.e., it must correspond

to an invariant subspace of T,.

o ————

TS IR 7 oy LT T

T ———
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2.5. External realizations.

It is clear that a necessary condition for the existence of extermal
realizations is the presence in H of elements orthogonal to H(z). For
the sake of simplicity we assume that H = H(z) © H(Y), where [ 1is an
n-dimensional normalized white noise orthogonal to H(z). As it will be
apparent from what follows, this assumption is the minimum one needed to
guarantee the existence of a proper stochastic realization corresponding
to each wide sense stochastic realization.

Let x be the state process of a realization (2.6)-(2.7) and P its

covariance. Then the Bounterpart of (2.47) is
(2.56) x(t) = x, (t) + E{;(:)ln:(u*)} + §{§(t)ln(c)}
and (2.48) corresponds to

@2.57) %) = Bt + 1) + Fare,) M2, ()

+ E(x(e) - BrA%5ce + 1 lrE))

Now let us assume that 7 is chosen in such a way that the conditiom
H;_l(c) 1 H:(;) holds and Z and x are stationarily correlated for
every realization (2.42)-(2.43). This assumption is introduced to enable
us to treat 7 in the same way as the innovations. It will be clear
from what follows that indeed this is a natural assumption when trying

to model all realizations using a unique exogenous noise. We can now

add to (2.42)-(2.43) the output.
z(t) = Mx(t) + [L(t) - Mx(t)]

where M = E{C(t);(t)'}s# and an argument very similar to that used for
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the innovations gives E{x(t) - 'i"r;;’x(t + 1)|H(Z)} = PM'g(t) so that

(2.57) becomes

-1/2

2.58) %) = BrfRce + 1) + FuRee) M 20 (0) + Buin(e)

Note that M must satisfy

? - 78t

~ ~

r,f + Fare,) 6 + ME

and that, as~in the 1nterna1'case, the input noise (u*, T) 1is the same
for all realizatioms.

Let x/(t) and xy(t) denote E(?(:)\u:(u*)}

and E{x(t)|H(Z)} respectively. Then it follows from (2.58) that

(2.59) x (2) = (B = B)(P* = ) h(xk(e) - x,(t))
and

~ ~_ ~ffe ~
(2.60) xp(t) = PP x (t + 1) + PMg(c)

Using (2.53), (2.56), (2.59) and (2.60) we conclude that
(2.61) x(t) = x, (£) + (P - P,)(P* = B,) " L(x#(t) - x,(t))

+ I oanhze + 1
1=0

Conversely, given any matrix M such that M'M ¢ Cn, let ; solve

S=1

~—] -
Pl i, +uRe,) e 4 U

Then, using (2.61), we construct the state of a stochastic realization

of z. All the realizations with singular ; can be obtained through
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limiting procedures, using realizations corresponding to unbounded se-
quences of M'M in the cone Cn.

The derivation of the classification of external realizations pre-
sented above is quite similar to the one given in [33; P.65], but we
feel it will give some further insight into the concepts described there.
Moreover it provides a clear stochastic meaning for the parametric rep-
resentation of the set P derived by Faurre [12; P.52] in continuous

time and by Germain ([13; p.61] in discrete time. Finally the input pro-

cesses of external realizations can be characterized along the same lines

;J "as in [19].

g ———




' Part 3

DISCRETE TIME STOCHASTIC REALIZATION:
THE SINGULAR CASE

3.1 Invariant, predictéble and smoothable subspaces.

Problems I and II are called singular when (=) 1s singular. It
follows from Theorems 1.6 and 1.9 that in the singular case there exist
nontrivial invariant directions for the Riccati equation (1.5) associated
to every solution to Problem I. Abusing language we shall say that a
vector a is invariant (predictable) for [A, B, C, D] 1if it is invari-

ant (predictable) for the corresponding equation (1.5).

Proposition 3.1 The space 1 of invariant directions is invariant
over all wide sense realizations of z.

Proof. Immediate from Theorems 1.6 and 1.9. N

The following result describes the singular case in a number of

different ways.

Theorem 3.2 The following statements are equivalent:
(i) &(») is singular.
(i2) T, is singular.
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(1ii) R(P%) s singular.

(iv) REOM? - B1En IR i singular.
Proof. Let Y ¢ R® be in the null space of ¢(®). Then, recalling that
$(») = DD’ - DB'(P')-]'H’ where [F, B, H, f)] is any wide sense realiza-

tion, ve obtain from (2.25) BJ(F') lm'y=~ (uZa’ + ppnl/2

v = Rz 2y
Hence Y ¢ N(B.(P",)]'/2 - BJ(F ')-lﬂ') and (F ')~]F'YeN(I',:). Conversely,
if (i1) holds, use the fact that the eigenvalues of [, are equal to the
zeroes of the determinant of W, to get (iv) from which (i) follows tri-
vially. The equivalence between (ii) and (iii) has been proven by

Ruckebusch [33; p.70]. Vi

Corollary 3.3 The set Q is nomempty if and only if &(®) 4is
singular.
Proof. For any P € Q we have R(P*) < R(P). Vi

This says that the singular case occurs precisely when some of the
wide sense realizations have R(P) singular, in particular when R(P*)
is singular. This constrast with the continuous time situation where,
when the innovation process is full rank, all the input noises have non-
singular intensity.

Let 'rnu.) 1i=0,1, ... be as in Theorem 1.9 so that &(z) =
Z: " TR(i)z-i for |z| large enough and "i"* be the weighting pattern

(1.17) corresponding to the minimum variance realizationm.

Theorem 3.4 The following statements are equivalent:
(i) a 1is an s-invariant direction of the wide sense realization
[Fi B! H, D]'

() a=Jo, En7n, wien 1373 Tg(DA g = 0

Jol, cees 8
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(itd) a=I5 ®NTRA with 1503 RO B AN e

(tv) a=J3, FNTHNL with a'x(e) = I3 Mzt - 1) for

all t.

(v) a 1is a generalized eigemvector of rank s (an eigemvector if

s = 1) of T, corresponding to the eigemvalue zero.
Proof. The eigenvalence of (ii) and (iv) is immediate. The resat follows
at once from Theorem 1.6, in view of Proposition 3.1 and the fact that
the deterministic and stochastic elements in the minimum variance reali-

zation can be obtained as limits of the corresponding quantities in a

transient Kalman filter of the form (1.3). /

Corollary 3.5 ALl the imvapiant directions of [F, B,, H, R(p,)'/?

are pz'edwtablc

]

Proof. It follows directly from Theorem 1.1l and condition (iii) of

Theorem 3 4. Vi

Note that in Theorem 3.4 the space I appears as the invariant f ;
subspace of I, related to the zero eigenvalue. We now introduce the
backward counterpart of the concept of invariant direction. A vector a
is said to be a dually s-invariant direction of the dual transient Riccati

equation .

T(t - 1) = FE(e)F - (F'T(L)G + BD") (C'T(L)G + DD") ~L(G'T(e)F + DB ")

3
1 e + BB’
i TO) = F t

| if a'T(-t; p) = a't(-s; 0) for all t >s and all P e C,. Also let




e
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T be given by (1.17) with [F’, B, 6, R®) 2] 1n place of

[A, B, C, D]. Duality now gives the following result.

Corollary 3.6 The following statements are equivalent:
(1) a 1is a dually s-invariant direction of the backward wide
sense realization [F', B, G', D].

(i5) 3 =15, Flew, with I3 T (n) g =0 1=l .,

(444) T =3 Fow with DT Du, =0 g1, ..., s

(tv) a=Jo Flow with ax(c) = [ wiz(c+1) forall c.

(v) a is a gemeralized eigenmvector of rank s (an eigemvector

if s=1)of T!=F'- -B'*i(f"*)-llzc' corresponding to the

eitgenvalue zero.
Next we define the dual counterpart of predictability.

Definition 3.7. The n-dimensional vector a is called an s-smoothable

direction of equation (3.1) if
3.2) a'T(-t; P) = a'T(-s; P) =0 for all t 2 s

The terminology is motivated by the fact that if a satisfies (3.2) then,
by property (iv) in Corollary 3.6, we can smooth the state of any proper
stochastic realization corresponding to [F’, B, G’, D] exactly in direc-
tion P.l-a-. Clearly all the dually invariant directions of

[F’, i*, G’, i(F*)llzl are smoothable. Let I indicate the space of
the invariant directions of (3.1) which, by Proposition 3.1 and duality,

is invariant over all backward wide sense realization. Ruckebusch proved
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that T, = (B%)'(p% - B)T/(P* - P,)"'p* [33; p.53]. Therefore it

follows from Corollary 3.6 that (P* - P,) (P*)_ll— is the invariant sub-
space of [, corresponding to the zero eigenvalue. Moreover the dimen-
sionsof I and I are equal. The following theorem characterizes the
predictable su.bspace of an internal realization and the smoothable sub-
space of the corresponding backward realization. It also shows that the
sum of the dimensions of these two subspaces is constant and equal to

dim 7.

Theorem 3.8 Let x be the state process of the intermal realization

/2

(F, B, B R®)% u]l and S the imvariant subspace of T, associated

1
with x 1in Theorem 2.8, so that x(t) = x,(t) + "T,(x*(t) - x,(t)) with
T, given by (2.39). Then, if a= Z:_l (F')-in'li belongs to S* n1

and a= Z:-l F-icui belongs to P*(P* - P,,)-ls n T we have

n
(3.3) a'x(t) = ) \jz(t - 1)
1=1
and
= -} n
(3.4) atP*) “x(t) = ] ufz(t +4-1)

i=1

Moveover dim(S' n 1) + dim(P*(P* - ) Is 0 T) = dim 1.

Proof. Since (P* - P*).IWB(P* “P) = ‘ITs' and T projects parallel
to (P* - P*)S‘L, we have a'1rs = 0 and :'(P*)_lﬂ‘s = ;’(P*)-l. Proper-
ties (iv) of Theorem 3.4 and Corollary 3.6 now yield (3.3) and (3.4) res-
pectively. Let k be the smallest positive integer such that I =
N((I’;)k); Theorem 3.4(v) insures the existence of such a k. Then we

have the direct decomposition R®=16e R((I‘;)k), where R( (I',:)k) is the

o -<x‘uv—-h‘~'-wwi
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range space o‘f (I';)k, cf. [15; p.166] for example. Consider also the
\sual orthogonal decomposition R®=N((T)%) oR((TH¥), where N((T)" =
pe-2,) (%) 1. It follows that dim(SnT) = dim(Sn (P*-R,) (7.
To complete the proof, observe that I=(Ins) e (InsJ') and that

din(s n (B* - B,) (P%) TT) = dim(Px(p* - PO sa D). 4

It is worthwhile mentioning that a '(P*)™L in (3.4) has actually

i-1 n-
the forn Jj_, W/ _EF  with R raom =0 for 3=1, ...,

as one can readily verify using (2.4)-(2.5) and (2.16)~(2.17) to estab-
1ish the correspondence between T(°*)' and %(°). Converéely such a

vector leads to a smoothable direction in the backward setting. Hence
a predictable-smoothable directiom in the forward setting (i.e., a di-

rection in which the state can be computed from a finite number of obser-

-1

{=-n
’ ’ ’ 14 14

(Y 3> Yaug® *oo0 Yor Yig» ooes Y!;) and T is a block diagonal matrix,

vations 2z) has the fom (F:')iﬂ'Yi with Y € N(T), where Y' =
the two diagonal blocks being block triangular Toeplitz matrices. The
apper one has (P row [T - D)7, (L - 2)% ..oy T(0)' O, occp O] and
cha Towst one Bas 8 zow. (70 = 1), B < 2), woon T@Y, 0y ooy 01,
where i=1, ..., n.

The linear hull of the components of x,(t) and x*(t) 1is called
the frame space [18] and denoted by BE(z). In view of Theorem 2.8, we
know that the components of the state at time t of an internal realiza-
tion belong to BE(:). Let us introduce the subspace H +(z) of EE(z),
given by the linear hull of elements of the form a'x*(t;: and

:'(P*)-lx*(t), where a varies over ] and a over 1. By analogy to

the continuous time case [10], we shall call H _(z) the germ space,
t
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since it contains linear combinations of differences of the type Arz(s) =
z(8) - z(s - r) and of certain other values of the process z that in-
dicate precisely the degree of "smoothness" of the covariance of z in
different directions. Then Theorem 3.8 shows that dim(X(t) n B _(z)) =
dim I, where X(t) 1is the space spanned by the components of t:h: state

x(t) of an internal realization. Note that in contrast to the contin-

uous time situation [18], the inclusion H +(z) c X(t) does not hold.
t
From now on let dim I = v.

Theorem 3.9  Let [P, B., H, R(®)/2; u] be an internal realization.

1
Then this realization can be embedded in a chain of intermal realizations
i3

1
(F, B (1), H, R(P,)
S eee P, (X (£)n Ht_'_(z)) < H_,(z) ad

: “1] with state spaces xi(c), i=0, ..., v,

such that Po < Pl

+
(xv(t) n Kt+(=)) < Kt(z)-
Proof. let S be as in Theorem 3.8 and a5, s 3L be a basis for

SL n I. Then we can generate a family si of invariant subspaces of
Tyo 1=0, ...y v, with am(s; n I) =v - i, simply eliminating from

SL, one at a time, the a, or adding to st new linearly independent F

elements of T, both operations being performed taking due care of the

ol e

rank of the generalized eigenvectors which are dropped or added, so that

the resulting subspace is indeed invariant for T;. This can be dome

b e =l S 3 il i Py ot

since ] can be decomposed into cyclic subspaces. Clearly this procedure
yields a family of internmal realizations which differ only on the germ

space and such that S = sv-r' The state covariances are totally ordered

since, 1f 1 < j and xi(t), (t) are the corresponding state pro-

3
cesses, :1(t) is equal to x,(t) in any direction in which it differs

R—

e g —

- » eng. 2 i
il gttt A A BT O il s i
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from xj(t). Finally, by construction, [F, Bl(O), H, R(Po)llz; u°] has

a full size predictable subspace and the backward realization correspond-

/2

ing to [F, Bl(v), H, R(Pv)l o “v] has a full size smoothable subspace.

Thus, the last assertion of the theorem follows. /l

Notice that the chain of realizations in Theorem 3.9 is by no means
unique. However the minimum and the maximum realizations are uniquely
determined. In the case when T, 1is cyclic, the number of internal
realizations is finite and s 2% [40; Remark 18]. Our work has shown
that Zn-v(v + 1) 4is actually an upper bound in the cyclic case. In
fact internal realizations are in one-to-ome correspondence with the in-
variant subspaces of [, and, when I, 1is cyclic, I 1is cyclic and the
chain of invariant subspaces constructed in Theorem 3.9 is unique, so
that the number of different invariant subspaces of T, 1is less than or

equal to Zn-v(v + 1).

Let us consider a proper external realization of the form (2.5)-
(2.7) and an invariant direction a = }}_ . (FN)'E’A, for it which is not
predictable. Then two cases can occur. Either Z::i (1")-1'3'11_'_:j be-
longs to N(Bz) for j=0, ..., n-1 or_it: does not. It can be seen

that in the first case we are in a situation akin to the one for internmal

realizations andée can associate to the vector a a smoothable direction in
the backward setting. In the second case, which always occurs if

anz' >0, a 1is invariant but the state camnot be determined exactly
from a finite string of observations and we would need to have available
the process [ orthogonal to H(z) and to model external realizations

as done in Section 2.5 to be able to calculate the state in v linearly

independent directions. For the sake of brevity, we have avoided here
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going into details about external realizations. However, it should be
clear from our discussion that the sum of the dimensions of the predictable
and smoothable subspaces associated with an external realization is less ]

than or equal to V. This fact has the intuitive meaning of indeterminacy

{
introduced by the presence of the orthogonal component . %
The presence of nontrivial invariant directions allows, as it should }

be expected, for a reduction in the dimension of the filtering algorithms |

available in the literature. For instance, it is a simple exercise to

verify that Faurre's algorithms to compute P, and P* [12; p.56] reduce
! 4
i to solving (n - X) x (n - V) matrix equations, the values of P, and |

;; (%)t

on the subspaces 1 and 1 respectively being known a priori in

terms of H, F and G. A similar reduction can be obtained for the fast

algorithms which compute the gain (1.4) directly (cf. [17] for example), L
since it is clear that in an invariant direction the value of the gain

can be computed directly in terms of the system matrices. €

3.2 Noise free stochastic realization and the singular case. !

Akaike, in his important paper [l], deals with Markovian representa-
1 tions of the process z without noise in the output and only in his
k concluding remarks discusses representations with additive noise terms.

Indeed, his work was based on some results of Faurre [11] whith, starting

from a certain factorization of the covariance matrices, were phrased in
terms of noise-free realizations. In subsequent work [12] Faurre turned
to a different factorization of the covariance matrices which led natu-

rally to realizations with noise in the output. The same choice has,

since then, been made by a number of authors (13, 22, 23, 33], but, up

8 N s > satbie . i . R T
e R o T S S . s - i S Mt
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to our knowledge, it has never been explained whether the two approaches
are equivalent and, if not, what are the shortcomings of either ome. We
shall now show that, precisely in the singular case, the first approach
presents a cot_xsiderable disadvantage, in that many minimal Markovian real-
izations are lost. Let us start considering a minimal factorization

(5, 9, ¥) (i.e., completely controllable and observable) like the ome in
[11], namely

(3.5) 8 = Elz(t + Dz(t) ') -yl jao0,1, 2, ...

and let dim Z = r, On the other hand, since ¢ 1is the double side

z-transform of A, we have

e  je1, 2 3, ...
(3.6) A, =
G'EN ! + o) i=0

Theorem 3.10 Let k be the dimension of N(¥(®)) and assume, with-
out loss of generaliy, that &(») = [R'0] where R i3 (m - k) X m.
Then (S, O, Y) <8 givenm, up to a change of basis, by

(3.7) %61 = [?’[F:G]’ E [3]]]

where

the identity matrix i8¢ m - k dimensional and r =n + m - k.

Proof. It is easy to check that the triplet in (3.7) satisfies (3.5).
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Also (S, O) 1is controllable and (Z, ¥) 1is observable. In fact sup-

a
pose a-[ul with a, € R® and a, € g is such that
2

¥1c G PG ... PRTOR2G
(3.8) (G{a 02') =0
R B B e 0

Then we see that @, must be zero, which forces a.z'R = 0 and finally

a, = 0. We conclude that the controllability matrix in (3.8) is full

rank. Similarly the observability matrix is seen to have rank

-n+m - k. The conclusion now follows from the uniqueness, up to an

equivalence as in (2.1), of the triplet (E, O, VY). /l

Let us assume for the moment that &(«) is nonsingular and consider
a proper stochastic realization of z [F, B, H, D; w]. Then we can

associate to it the noise free model

-1
i) B
(3.9) g(t + 1) = Fg(t) + [ e :ln(t)
D - HF ]'B
(3.10) z(t) = [H I]&E(t)
where
F-lx(t + 1)
g(t) = <%
(D - HF "B)w(t)

and n(t) = w(t + 1). This induces a one-to-one correspondence between
wide sense realizations of the form (F, B, H, D] and noise free wide
sense realizations of the form (F, x, (RI)] which are minimal too in

view of Theorem 3.10. If we agree to call realizations ['i", Xs(HI); nl

e i
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with X(n +m) X m internal, then the above correspondence is one-to-
one between internal realizations. In particular it maps

(¥, B,, B, R(2,)/?

; u,] to a realization related to the steady state
pure filter, i.e., the second innovation representation IR, in Gevers

terminology [14].

G bR "

Suppose now that ¢(x) is as in Theorem 3.10 with k > 0. Then
it is possible to set up a correspondence similar to the one in the
nonsingular case only for a rather small subclass of wide sense realiza-

tions. More explicitly, let [F, B, H, D; w] be a realization such

s

that E(O) =D’/ - B'(F')-]‘H' has rank m -k and V an ortho_gonal

’ matrix such that [D - EF-]'B]V = [S] where S is (m - k) xp, p

0
being the number of columns of B. Then we have the n +m - k dimen-

sional noise free model

4 F i3
(3.11) g(t +1) = FE(t) + n(t)

(3.12) 2(t) = Ex [g]]s(c) ,

Flix(t + 1)

where E(t) = [ ] and n(t) = V'w(t + 1). The wide sense

SV 'w(t)
realization given by (3.11)-(3.12) is minimal. This establishes a one-
to-one correspondence between minimal wide sense realizations of z

such that "f(O) has rank m - k and minimal wide sense realizatiomns of

the form [?, X, (H [(]):])]' It is now apparent that the choice of seeking

noise free representation of 2z can cost us, in the singular case, the f

loss of a considerable number of realizations. Indeed, it is not hard

| S
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to see that the subset of P corresponding to realizations with rank
?(0) =m-k lie, as @, in the relative boundary of P.

This shows that, in discrete time, the factorization (3.6) and the

associated choice of H;.l(z), instead of H;(z), as past space at time
f t, is more convenient, even though it implies the unpleasant fact that

white noise processes have zero dimensional minimal realizationms.
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